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Review

There is growing epidemiologic evidence of 
differing associations between air pollution and 
respiratory health for females and males. More 
studies report stronger effects among women 
and girls than among men and boys, but the 
literature is far from consistent. Importantly, 
it is unknown whether observed modification 
is attributable primarily to biological differ-
ences between men and women, to exposure 
differences (e.g., work-related coexposures), 
or to some interplay thereof. Gender analysis, 
which aims to disaggregate social and biologi-
cal differences between men and women (e.g., 
hormonal status), may help to elucidate this 
modification, identify key mechanisms, and 
design more effective interventions.

The distinction between gender (i.e., 
self-representation, socially derived activities 
and roles) and sex (i.e., biological differences 
by chromosomal complement, including 
reproductive organs and hormonal composi-
tion) (Krieger 2003) speaks to the distinc-
tion between exposure and susceptibility. 
Gender analysis is more common in occupa-
tional epidemiology (Arbuckle 2006; Messing 
and Stellman 2006; Messing et  al. 2003; 
Schachter et al. 2009) than in environmental 
health (Keitt et al. 2004), because persistent 
job stratification by sex (Alexanderson and 
Östlin 2001) has produced marked differ-
ences in occupational exposures to chemi-
cal agents (Hursidic-Radulovic et al. 2002; 

London et al. 2002), ergonomic demands 
(Silverstein et al. 1986), injury (Salminen 
et  al. 1992), and psychosocial stressors 
(Arcand et al. 2000; Bourbonnais et al. 2000; 
Gutek 2001; Hall 1989).

Gender, a social construct, includes cul-
tural norms, roles, and behaviors shaped by 
relations among women and men and among 
girls and boys (Krieger 2003). Gender, inher-
ently social, varies continuously over multiple 
dimensions over the life course, whereas sex is 
normally dichotomous. Gender is shaped at 
the societal level and varies across nation, cul-
ture, class, race, ethnicity, nationality, sexual-
ity, and religion. Gender describes patterns of 
behavior, place, and role, determining where 
people spend time and their activities, thereby 
shaping exposure distributions.

Sex, a biological construct, is based on 
physiologic differences enabling reproduc-
tion, defined by physiologic characteristics 
(especially reproductive organs) or chro-
mosomal complement (Krieger 2003). Sex-
linked traits (e.g., hormonal status, body size) 
influence biological transport of environmen-
tally derived chemicals. Lung size and growth, 
deposition of fine particles [particulate matter 
≤ 2.5 µm in aerodynamic diameter (PM2.5)] 
(Kim and Hu 1998, 2006), gas absorption 
(Jones and Lam 2006), gas–blood barrier per-
meability (Brauner et al. 2009), airway hyper-
responsiveness (Kanner et al. 1994), vascular 

response (Prisby et al. 2008), and inflamma-
tion (Hermes et al. 2006; Sood et al. 2008) 
all differ, on average, by sex.

Sex and gender can be difficult to distin-
guish in epidemiologic data; they are tightly 
intertwined, with reciprocal effects. Biological 
characteristics (e.g., body size) become engen-
dered as occupational and family roles, which 
are gendered expressions of biology. Likewise, 
gendered work and caregiving roles, smoking, 
and alcohol consumption influence muscle 
mass, adiposity, and chemical body burden—
collectively, these are socially derived biologi-
cal expressions of gender (Krieger 2003).

In this review I present a framework for 
incorporating gender analysis into air pollution 
epidemiology, describing pathways through 
which gender and sex, separately and multi-
plicatively, may influence pollution response. 
Current evidence of effect modification in air 
pollution respiratory epidemiology is summa-
rized, and potentially useful nascent analytic 
methods from gender analysis are offered.

Gender analysis explores topics far beyond 
those addressed here, including sexuality and 
transgender issues. Here I consider only those 
constructs and tools that may directly inform 
mean differences between men and women in 
air pollution epidemiology.

A Framework for Incorporating 
Gender Analysis into 
Environmental Epidemiology
Incorporating aspects of gender analysis into 
the environmental health paradigm (Figure 1) 
actualizes this distinction between gender and 
sex. The framework is elucidated by draw-
ing examples broadly from environmental 
epidemiology, elucidating pathways through 
which gender and sex may, individually and 
recursively, shape population exposure and 
susceptibility.

Concentration to exposure. Gender 
shapes where people spend time and activ-
ity patterns—for example, sports participa-
tion, work-related chemical and ergonomic 
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exposures, and use of personal care and 
cleaning products. Nickel dermatitis and 
hand eczema are far more prevalent among 
women than men in Western countries, likely 
because of chronic exposures from jewelry 
(Meding 2000). Indoor fossil fuel burning 
for cooking in developing countries drasti-
cally increases kitchen PM2.5 concentrations 
(Dionisio et al. 2008; Rumchev et al. 2007); 
because women generally perform more cook-
ing in these societies, they suffer elevated 
respiratory symptoms (Behera 1997), asthma 
(Qureshi 1994), chronic bronchitis (Pandey 
1984), chronic obstructive pulmonary dis-
ease (COPD) (Ramirez-Venegas et al. 2006), 
pneumoconiosis (Grobbelaar and Bateman 
1991), tuberculosis, lung cancer (Behera and 
Balamugesh 2005), and mortality (Lopez 
et al. 2006). Accordingly, stove-replacement 
interventions have effectively reduced expo-
sures and improved women’s health in these 
settings (Khushk et  al. 2005; McCracken 
et al. 2007). Gendered home activities shape 
exposures to cooking exhaust and cleaning 
products, behaviors and home characteristics 
that vary by social class, climate, and culture. 
Residence-based exposure estimates may bet-
ter capture exposures among homemakers and 
thus may be more accurate for women than 
men in most societies.

Exposure to dose. Sex differences in dermal 
absorption and lung function (Becklake and 
Kauffmann 1999; Ernstgard et al. 2002) influ-
ence contaminant uptake. Skin metabolizes 
some xenobiotics, modifying their toxicity 
(Bashir and Maibach 2002); this character-
istic differs by sex and is influenced by gen-
dered dermal exposures (e.g., topical creams, 
cosmetics, jewelry). Respiratory absorption 
of airborne gases (Jones and Lam 2006) and 
gas–blood barrier permeability (Brauner et al. 
2009) also differ by sex.

Dose to effective dose. Sex determines the 
availability of target organs and hormonal 
systemic regulation. Only in women are pat-
terns in ovarian cancer or pregnancy outcomes 
observable; only in men can testicular cancer 
patterns be observed. Kinetics and toxicity of 
chemicals in women’s bodies vary across the 
life course, during menarche, pregnancy, lacta-
tion, and menopause (Roberts and Silbergeld 
1995; Silbergeld et al. 1988); gastrointestinal 
cadmium accumulation increases with low iron 
stores (Åkesson et al. 2002), common during 
pregnancy and among women of reproductive 
age (Gunshin et al. 1997). Estradiol and tes-
tosterone influence transport of environmen-
tally derived chemicals and accumulation in 
the brain, kidney, liver, and intestines (Morris 
et al. 2003); mercury retention in kidneys can 
be three times higher among women than men 
(Barregård et al. 1999; Hultman and Nielsen 
2001). During pregnancy (a sex-linked state), 
activity and exposure patterns change (Nethery 
et al. 2009), and hormonal changes affect toxi-
cant transport throughout the body.

Effective dose to health outcome. Sex-linked 
biological differences influence disease etiol-
ogy after organ exposure. Women have more 
arsenic-induced kidney and bladder cancers 
than do men in regions with arsenic in drink-
ing water, likely because of reduced chemi-
cal excretion during pregnancy and lactation 
(Concha et al. 1998). Sex-linked hormonal 
status alters vascular effects of diesel exhaust 
(Prisby et al. 2008). Coexposures from gen-
dered behaviors (e.g., alcohol and tobacco use, 
cardiovascular exercise) modify the biologi-
cal fate of environmentally derived chemicals 
and organ resiliency. Sex and gender effects 
can interact; sex-linked pregnancy outcomes 
(observable only among women) are modi-
fied by gendered behaviors (e.g., smoking, 
occupational endocrine disruptors, hairspray 
exposures) (Ormond et  al. 2008). Gender 
differences in health-care seeking and illness 
behaviors influence the progression of environ-
mentally derived illness.

Current Evidence of Effect 
Modification by Sex in Air 
Pollution Epidemiology

Search Methods
A PubMed (National Library of Medicine 
2009) search, performed in July 2009, 
retrieved all publications in the database 
identifiable using the terms “respiratory” and 
“nitrogen dioxide” (or “NO2”) and any of the 
following terms: “sex” (n = 41 citations), “gen-
der” (n = 8), “women and men” (or “men and 
women”) (n = 243), or “girls and boys” (or 
vice versa) (n = 8). Another search retrieved 
all publications identifiable using “fine par-
ticulate matter” (“PM2.5”) and “respiratory” 
and any of the following terms: “sex” (n = 11), 

“gender” (n = 5), “women and men” (or vice 
versa) (n = 65), or “girls and boys” (or vice 
versa) (n = 2). Only respiratory outcomes were 
considered (i.e., diagnosed respiratory illness, 
symptoms, lung function, respiratory mortal-
ity), although the findings and models may 
apply to other outcomes. Papers examining 
noninhalation pathways were also excluded; 
thus, effects of prenatal air pollution exposures 
on infant and child health (which may differ-
entially affect boys) are not considered here.

Of the 383 publications identified, seven 
review articles were eliminated, along with 
30 duplicate citations identified by multiple 
search criteria, 42 publications not available in 
English, 50 publications on noninhalation path-
ways or nonrespiratory outcomes, 13 publica-
tions on nonhuman species, and 32 publications 
not primarily examining air pollution exposures. 
Abstracts of the remaining 209 publications 
were reviewed to determine whether effect mod-
ification by sex was tested; if the abstract was 
unclear, the original publication was consulted.

Most publications reported only sex-
adjusted effects or examined only one sex. 
Only 37 unique publications examined air pol-
lution effect modification by sex (summarized 
in Tables 1 and 2). Given vast differences in 
analytic methods, outcomes, exposure intensi-
ties, and durations—with few studies exploring 
any combination thereof—meta-analysis was 
not appropriate. It is beyond the scope of this 
review to assess the magnitude of effect modi-
fication, which varies by study design and out-
come measure. Most (not all) of the reviewed 
publications reported odds ratios or risk ratios, 
with interactions on the multiplicative scale. 
Authors also used varying statistical criteria for 
“significant” interactions (here, p < 0.05 unless 
otherwise stated). Issues in assessment of inter-
actions for epidemiology have been detailed 
elsewhere (Knol et al. 2009).

The qualitative review documents the 
widely varying explanations offered to explain 
observed modifications—as such, only papers 
in which authors offered such interpretations 
are included. Accordingly, the results described 
here, and summarized in Tables 1 and 2, are 
not exhaustive, but represent effect modifica-
tion as reported by the authors. Only a few 
studies took additional analytic steps to exam-
ine sources of difference that may account for 
observed effect modification.

Search Results
Because gender differences in behaviors, expo-
sures, or coexposures (e.g., diet, smoking) and 
biological factors (e.g., hormonal composition) 
change over the life course, studies are summa-
rized separately for adults and children.

Gender and sex differences in respiratory 
health effects among adults. Studies report-
ing stronger effects among women. Studies 
of residential air pollution exposures suggest 

Figure 1. Possible roles of gender and sex in shap-
ing observed relationships between air pollution 
and health. Gender affects the presence of the 
exposure itself (e.g., cosmetic use), whereas bio-
logical sex differences determine the consequent 
dose (e.g., through dermal thickness and perme-
ability). Sex differences in biological transport 
and target organs determine health outcomes, 
potentially modified by gendered (behavioral) 
coexposures and their sequelae. 
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Gender

Effective dose

Health outcome
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stronger associations among women. In the 
Atherosclerosis Risk in Communities (ARIC) 
study, Kan et al. (2007) found that living near 
a major road predicted lower forced expira-
tory volume in 1 sec (FEV1) and forced vital 
capacity (FVC) only among women. The 
authors pointed to women’s greater airway 
reactivity, citing stronger responses to smok-
ing (Lodrup Carlsen et  al. 2006; Vollmer 

et al. 1994; Yunginger et al. 1992), or better 
accuracy in residential exposure assessment for 
homemakers (35% of ARIC women vs. 17% 
of men).

Franklin et al. (2007) studied 130,000 
respiratory deaths in 27 U.S. communities, 
using case–crossover methods and meta-
analysis, and found that community air pol-
lution better predicted death among women 

than among men. The authors proposed sex-
differing respiratory anatomy and physiology, 
or PM deposition patterns.

In a comprehensive study of daily air pol-
lution and respiratory hospitalization among 
adults and children in Windsor, Ontario, 
using time-series and case–crossover methods, 
Luginaah et al. (2005) reported a larger num-
ber of significant associations among women 

Table 1. Studies examining effect modification by sex among adults.

Study Population Exposure metric(s) Outcome(s) Risk among males Risk among females
Studies reporting stronger effects among women
Franklin et al. 2007 1.3 million deaths, 27 

U.S. cities 1997–2002
Prior day PM2.5 

> 10 µg/m3
Percent increase in 

respiratory mortality
All-cause mortality

1.90 (0.14–3.65)

1.06% (0.07–2.6)

1.57% (–0.22 to –3.35)

1.34% (0.40–2.27)
Ito and Thurston 

1996
Daily deaths 

in Chicago, IL 
1985–1990 

Daily PM10, O3 at nearest 
regulatory monitor

RR for respiratory 
mortality 

RR = 1.10 (0.97–1.26) RR = 1.17 (1.02–1.35)

Kan et al. 2007 15,792 middle-age U.S. 
adults, 1987–1989 
(ARIC cohort)

Quartiles of residential 
traffic density

Lung function: FEV1 

FVC

β (Q4, age adjusted) = 19.6 (–34.9 
to 74.1); p-trend = 0.66

β (Q4, multivariate) = 11.7 (–40.2  
to 63.5); p-trend = 0.86

β (Q4, age adjusted) = –34.8 (–66.5 
to –3.1); p-trend = 0.01

β (Q4, multivariate) = –34.8 (–66.5  
to –3.1); p-trend = 0.01

Kan et al. 2008 Adult population 
of Shanghai, 
China (population, 
13.1 million) 

10-µg/m3 increase 
in daily PM10, SO2, 
NO2, O3

Percent increase in 
respiratory mortality

β (PM10) = 0.17% (0.03 to 0.32) 
β (SO2) = 0.85% (0.43 to 1.28) 
β (NO2) = 0.88% (0.49 to 1.28) 
β (O3) = 0.19% (–0.16 to 0.55)

β (PM10) = 0.33% (0.18–0.48) 
β (SO2) = 1.06% (0.62–1.51) 
β (NO2) = 1.10% (0.69–1.51) 
β (O3) = 0.40% (0.03–0.76)

Luginaah et al. 2005 1,602 adults (15–64 
years) in Windsor, 
Ontario, Canada 
1995–2000

IQR increase in 1-, 2-, 
3-day lag NO2, SO2, CO, 
COH, O3, PM10, TRS

Risk of respiratory 
hospitalization 

RR (2-day COH) = 1.04 (0.82–1.32) 

RR (3-day COH) = 0.95 (0.80–1.13)

RR (2-day COH) = 1.20 (1.00–1.43), 
by case crossover

RR (3-day COH) = 1.15 (1.02–1.30),  
by time series

Sunyer et al. 2000 2,305 adults 
(≥ 35 years of age) 
Spain, 1985–1989

20-µg/m3 increase in 
same-day ambient 
black smoke

Respiratory mortality OR = 1.14 (0.98–1.33) OR = 1.52 (0.99, 2.31)

Sunyer et al. 2006 3,232 men and 3,592 
women in Europe

Constant traffic density 

NO2 > 50 µg/m3

Prevalence of chronic 
phlegm

β (traffic) = 6.13% (4.37–8.32); 
p-trend = 0.47

β (NO2) = 6.67% (3.49–11.36); 
p-trend = 0.98

β (traffic) = 7.69% (5.95–9.75); 
p-trend = 0.002

β (NO2) = 8.68% (5.30–13.22); 
p-trend = 0.05

Thaller et al. 2008a 142 lifeguards 
16–27 years of age 
(79% male)

10-µg/m3 increase 
daily average PM2.5, 
maximum O3

FVC 
FEV1/FVC

β (PM2.5) = –0.1% (–0.8 to 0.5) 
β (O3) = –0.006% (–0.2 to 0.05)

β (PM2.5) = –2.1% (–3.2 to –1.0) 
β (O3) = –0.3% (–0.4 to –0.6)

Studies reporting stronger effects among men
Abbey et al. 1998 1,391 nonsmoking 

U.S. adults 
IQR difference of 

54.2 days/year 
> 100 µg/m3 PM10

PPFEV1 

FEV1/FVC

β = –7.2 (–11.5 to –2.7) (males  
  w/parental respiratory illness) 
β = –1.5 (–2.7 to –0.4)

β = 0.9 (–0.8 to 2.5) 

β = –0.2 (–0.9 to 0.5)
Galizia and Kinney 

1999
520 nonsmoking 

undergraduate 
students in New 
Haven, CT

Lived ≥ 4 years in U.S. 
county with summer 
1-hr O3 ≥ 80 ppb

Percent change in FEV1 
FEF25–75 
FEF75 symptoms

β = –4.7% (–0.7 to –8.8) 
β = –13.0% (–4.9 to –21.1) 
β = –10.0% (1.3 to –21.3) 
OR = 2.30 (1.15–3.46) 

β = –0.26% (3.79 to –4.31) 
β = –1.96% (5.39 to –10.30) 
β = –2.08% (9.94 to –13.9) 
OR = 1.79 (0.83–3.89)

Korrick et al. 1998 530 hikers (18–64 years), 
Mt. Washington, NH

Ambient O3, PM2.5, 
aerosol acidity

Percent change in FEV1 
FVC

β = –0.055 (SE = 0.025) 
β = –0.051 (SE = 0.016)

β = –0.039 (SE = 0.039) 
β = –0.019 (SE = 0.025)

Wang et al. 1999 1,075 Chinese adults 
(35–60 years) 

Ambient PM2.5 and SO2 
(rural vs. urban area)

Mean change FEV1 199 mL (SE = 50 mL) 87 mL (SE = 30 mL)

Studies reporting null or mixed modification
Ackermann-Liebrich 

et al. 1997
9,651 adults 

18–60 years of 
age in Switzerland 
(SAPALDIA cohort)

10-µg/m3 change in 
annual mean PM10

FVC β = 3.4% (p < 0.05)b Effects did not differ by sex

Chestnut et al. 1991 6,913 adults (25–75 
years) (NHANES I)

1-SD increase in TSP 
(about 34 µg/m3)

Percent change in FVC β = 2.25% (p < 0.05) Effects did not differ by sex (p > 0.75)

Jedrychowski and 
Krzyzanowski 1989

584 men, 830 women 
in Krakow, Poland

Residence in area with 
higher sulfate or sulfur 
transformation ratio

Lung function, 
symptoms

FEV1 decline faster by 11 mL/year  
  in high- vs. low-sulfate areas

High-sulfate area predicted 
symptoms, not lung function

Oosterlee et al. 1996 1,485 Haarlem, 
Netherlands, adults 

Living on heavy (vs. light) 
trafficked streets

Wheeze (ever) 
Wheeze (2-year)

OR = 1.1 (0.8–1.3) 
OR = 1.1 (0.6–1.8)

Effects did not differ by sex

Zeka et al. 2006 1.9 million deaths 
in 20 U.S. cities, 
1989–2000

10-µg/m3 change 
in daily PM10 
concentrations

Percent increase in 
respiratory mortality

β = 0.71 (0.004–1.42) β = 1.04 (0.33–1.75) 

Abbreviations: IQR, interquartile range; NHANES, National Health and Nutrition Examination Survey; NR, not reported; OR, odds ratio; PPFEV1, percent predicted FEV1; RR, relative risk; 
Q, quartile; SAPALDIA, Study on Air Pollution and Lung Diseases in Adults; TRS, total reduced sulfur; VC%, vital capacity percent. Key results demonstrate observed effect modification, 
and are not exhaustive of results reported for each study. Values in parentheses are 95% confidence intervals, unless otherwise indicated. 
aOther outcomes showed no significant effect modification by sex. bEffects did not differ by sex, and therefore are reported here in only one column.
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and girls than among men and boys. Two-
day lagged coefficient of haze (COH) expo-
sures predicted increased risks among women. 
For girls 0–14 years of age, 1- to 2-day lagged 
NO2, sulfur dioxide (SO2), and carbon mon-
oxide (CO) exposures predicted elevated 
risks. Among males, only 1-day lagged PM10 
predicted increased risks among adults. The 
authors proposed sex-differing biological 
explanations (e.g., hormonally affected inflam-
mation, smooth muscle and vascular function, 
lung growth and decline, airway and paren-
chymal size), citing evidence of sex-differing 
airway PM2.5 deposition (Kim and Hu 1998; 
Kohlhaufl et al. 1999) and greater responsivity 

to tobacco smoke among females (Chen et al. 
1999, 2005; Gold et  al. 1996; Hursidic-
Radulovic et al. 2002; Prescott et al. 1997; 
Varkev 2004; Xu et al. 1994a, 1994b). They 
considered gendered explanations; women are, 
on average, poorer and may experience greater 
(or different) psychosocial stressors, perform 
more household tasks (increasing exposures to 
viral infection, indoor allergens, combustion 
exhaust, cleaning solvent, and aeroallergens) 
(Redline and Gold 1994), and may differ from 
men in health-care seeking and illness manage-
ment behaviors (Goodman et al. 1994).

One Chicago cohort studied by Ito and 
Thurston (1996) showed greater all-cause and 

respiratory mortality with same- and previous-
day PM10 among black women than among 
other sex/race groups. The authors observed 
that physiologic differences and gender differ-
ences in activities, occupation, and class may 
shape pollution response, noting that race and 
gender were yet unexplored in environmental 
epidemiology.

In the Public Health and Air Pollution 
in Asia (PAPA) study, Kan et  al. (2008) 
reported stronger associations between pollut-
ants [PM10 (PM with aerodynamic diameter 
< 10 µm) SO2, NO2, ozone (O3)] and daily 
respiratory mortality among women, elderly, 
and lower socioeconomic status (SES) persons. 

Table 2. Studies examining effect modification by sex among children.

Study Population Exposure metric(s) Outcome(s) of interest Risk among males Risk among females
Studies reporting stronger effects among girls
Brunekreef et al. 

1997
877 Dutch children 

(7–12 years of age) in 1995 
Truck traffic density (for 

children within 300 m 
of motorway)

Change in FVC 
FEV1

β = –1.1 (–6.7 to 4.9) 
β = –1.8 (–7.5 to 4.2)

β = –6.3 (–11.4 to –0.8) 
β = –6.2 (–11.5 to –0.6)

Luginaah et al. 
2005

883 children (0–14 years of 
age) in Windsor, Ontario, 
Canada 1995–2000

IQR increase in 1-, 2-, 
3-day lag NO2, SO2, CO, 
COH, O3, PM10, TRS

RR of respiratory 
hospitalization 

RR(lag1 SO2) = 0.95 (0.87 to 1.04) 
RR(lag2 CO) = 0.996 (0.93 to 1.06) 
RR(lag2 CO) = 0.997 (0.87 to 1.14) 
RR(lag1 NO2) = 0.93 (0.81 to 1.07)

RR(lag1 SO2) = 1.11 (1.01 to 1.22) 
RR(lag2 CO) = 1.07 (1.00 to 1.14) 
RR(lag2 CO) = 1.19 (1.02 to 1.38) 
RR(lag1 NO2) = 1.19 (1.002 to 1.41)

Oftedal et al. 2008 2,307 9- and 10-year-old 
children in Oslo, Norway

IQR increase in lifetime 
NO2, PM2.5, PM10

Change in PEF 

FEF25 

FEF50

β (NO2) = –69.1 mL/sec  
(–135.3 to –3.0)

β (PM10) = –57.9 mL/sec  
(–116.2 to 0.4)

β (PM2.5) = –30.1 mL/sec  
(–79.7 to 19.5)

β (NO2) = –94.5 mL/sec  
(–166.6 to –22.4)

β (PM10) = –77.9 mL/sec  
(–141.9 to –14.0)

β (PM2.5) = –68.9 mL/sec  
(–120.8 to –16.9)

Oosterlee et al. 
1996

291 Haarlem, Netherlands, 
children (0–15 years of age) 

Living on heavy (vs. light) 
trafficked streets

Wheeze (ever) 
Wheeze (1-year) 
Dyspnea (ever) 
Dyspnea (1-year)

OR = 1.2 (0.4–3.7) 
OR = 0.7 (0.2–2.5) 
OR = 0.9 (0.2–3.2) 
OR = 0.4 (0.1–2.6)

OR = 4.4 (1.4–13.6) 
OR = 5.3 (1.1–25.0) 
OR = 4.8 (1.3–17.7) 
OR = 15.8 (1.4–174.4)

Pershagen et al. 
1995

197 children (4 months to 
4 years) hospitalized with 
wheeze, 350 controls

Residential outdoor NO2, 
presence of gas stove

RR of wheezing 
bronchitis

RR (NO2 > 0.7) = 0.7 (0.4–1.3);  
  p-trend = 0.10 
RR (gas stove) = 0.9 (0.5–1.8)

RR (NO2 > 70) = 2.7 (1.1–6.8);  
  p-trend= 0.02 
RR (gas stove) = 2.4 (1.0–5.9)

Peters et al. 1999 3,293 children in 12 
Southern California 
communities 

Lifetime ambient NO2, 
PM2.5, and O3

FVC 
FEV1 
PEFR 
MMEF

β (NO2) = –29.9 L/min (SE = 29.5) 
β (PM2.5) = 8.3 L/min (SE = 24.5) 
β (03) = 52.0 L/min (SE = 65.8) 
β (PM2.5) = 32.0 L/min (SE = 30.1)

β (NO2) = –63.8 (SE = 18.3) 
β (PM2.5) = –47.6 (SE = 14.4) 
β (03) = –250.9 (SE = 69.9) 
β (PM2.5) = –130.0 (SE = 30.3)

Rojas-Martinez 
et al. 2007

3,170 children (8 years 
of age) in Mexico City, 
1996–1999 

IQR increase in mean O3, 
PM10, NO2

Change in FEV1 β (O3) = –4 mL (–10 to 2) 
β (PM10) = –15 mL (–23 to –6) 
β (NO2) = –25 mL (–33 to –18)

β (O3) = –12 mL (–18 to –6) 
β (PM10) = –11 mL (–20 to –3) 
β (NO2) = –30 mL (–37 to –22)

Rosenlund et al. 
2009

2,107 children 9–14 years of 
age in 40 Rome schools

Residential traffic
Distance to busy road
Modeled NO2

Percent difference 
in FEV1

FEF25–75

β = –4% (–29 to 21) 

β = –26% (–81 to 29)

β = –23% (–49 to 2);  
  p for difference = 0.25 
β = –103% (–163 to –43);  
  p for difference = 0.06

Stern et al. 1989 1,630 children (7–12 years 
of age) in rural Canada

High- vs. low-exposure 
community

Percent difference 
in FVC

FEV1.0

β = 1.45% (p < 0.05) 

β = 1.41% (p < 0.01)

β = 2.52% (p < 0.001) 

β = 2.03% (p < 0.001)
Van Vliet et al. 

1997
1,498 children in 13 schools Residence within 100 m 

of freeway
Chronic cough 
Wheeze

OR = 1.05 (0.50–2.22) 
OR = 1.29 (0.45–3.68)

OR = 2.45 (1.16–5.16) 
OR = 3.05 (1.11–8.41)

Studies reporting stronger effects among boys
Delfino et al. 2004 14 boys and 5 girls with 

asthma, 9–17 years of age
IQR increase in 4-day 

personal PM2.5

FEV1 β = –16% (–26 to –6) β = –1% (–16 to 14)

Gehring et al. 2002 1,756 German infants Outdoor residential 
exposure gradient 
1.5 µg/m3 in PM2.5, 
0.4 × 10–5/m abs, 
8.5 µg/m3 NO2

Cough without infection

 
Dry cough at night

OR (PM2.5) = 1.43 (1.14–1.80) 
OR (abs) = 1.38 (1.11–1.71) 
OR (NO2) = 1.52 (1.16–2.00) 
OR (PM2.5) = 1.39 (1.08–1.78) 
OR (abs) = 1.31 (1.04–1.67) 
OR (NO2) = 1.45 (1.07–1.98)

OR (PM2.5) = 1.19 (0.84–1.70) 
OR (abs) = 1.25 (0.87–1.78) 
OR (NO2) = 1.22 (0.81–1.85) 
OR (PM2.5) = 1.17 (0.81–1.68) 
OR (abs) = 1.16 (0.79–1.71) 
OR (NO2) = 1.20 (0.78–1.84)

Jedrychowski et al. 
(1999)

1,001 children in Krakow, 
Poland

Residence in high- vs. 
low-pollution area

Slower growth in FVC 
FEV1

OR (FVC) = 2.15 (1.25–3.69) 
OR (FEV1) = 1.90 (1.12–3.25)

OR (FVC) = 1.50 (0.84–2.68) 
OR (FEV1) = 1.39 (0.78–2.44)

Peters et al. 1999 3,676 children in 
12 Southern California 
communities

IQR difference in 
community lifetime 
ambient acid, NO2, 
PM2.5, O3

Prevalence of wheeze OR (NO2) = 1.47 (1.04–2.09) 
OR (acid) = 1.55 (1.03–2.32)

OR (NO2) = 0.85 (0.59–1.21) 
OR (acid) = 1.08 (0.71–1.66)

Continued, next page
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The authors offered gendered explanations 
(e.g., smoking among men may obscure pol-
lution effects; Shanghai women’s lower aver-
age education may confound gender and 
SES) and considered biological explanations, 
including women’s smaller airways, greater 
airway reactivity (Yunginger et al. 1992), and 
greater deposition of PM2.5 (Kohlhaufl et al. 
1999; Sunyer et al. 2000).

Among 6,824 adults in 10 European 
countries in the European Community Health 
Survey 2000–2002 (ECRHS I), Sunyer et al. 
(2006) found that home traffic intensity and 
outdoor NO2 better predicted chronic bron-
chitis among women than among men. The 
authors also examined occupational exposures, 
which better predicted outcomes among men, 
separating some gendered activity pattern 
effects. The authors suggested sex-linked dif-
ferences in hormonal status, and gender dif-
ferences in coexposures, disease perception, 
health care access and use and differing per-
ceptions of environmental quality and symp-
toms by gender and education.

Sunyer et al. (2000) found that older and 
female Barcelona adults with COPD showed 
greater all-cause, respiratory, and cardiovascular 
mortality with same-day black smoke than did 
younger persons and men. The authors sug-
gested the reasons were a higher prevalence of 
frail persons among the elderly and women than 
among men, or biological differences, including 
inflammatory response [given women’s stronger 
response to smoking (Xu et al. 1994a, 1994b)], 
lung size, and airway diameter influencing PM 
deposition, respiratory patterns, and airway 
resistance (Bennett et al. 1996).

Studies reporting stronger effects among 
men. In the 20-year prospective California 
Adventists Health Study, Abbey et al. (1998) 
linked PM10 to reduced lung function 
(FEV1/FVC) among nonsmoking males, and 
decreased FEV1 among men with parental 
respiratory illness. Women and never-smok-
ing males displayed increased peak expira-
tory flow (PEF) lability. Among males, sulfate 
exposures predicted reduced FEV1, and O3 
exposures predicted reduced FEV1 among 
men with parental respiratory illness. The 
authors suggested gender differences in work-
related exposures or possible stronger healthy 
worker effects among women. They confirmed 
that cohort men spent more time outdoors 
(16.1 hr/week vs. 9.2 hr/week; p < 0.0005) 
and suggested that outdoor exposures may 
trigger responses in males with genetic predis-
position to respiratory illness.

Galizia and Kinney (1999) found that, 
among Yale freshmen, growing up in areas 
with high (vs. low) O3 was associated with 
symptoms and reduced lung function among 
males but not among females. The authors 
suggested the gendered explanation that men 
may accumulate greater O3 exposures through 
outdoor physical activity.

Studies reporting null or mixed modifi-
cation. Zeka et al. (2006) found that ambi-
ent PM10 was associated with respiratory and 
all-cause mortality across 20 U.S. cities, using 
case–crossover analysis. Although modifica-
tion was nonsignificant, the authors posited 
that sex, race, and age may indicate SES, 
increasing susceptibility through lesser health 
care access, poorer nutrition, greater stress or 

violence exposures, or increasing actual expo-
sures through residential proximity to high-
ways or occupational coexposures. Finally, 
they suggest sex-linked biological differences 
in PM deposition.

In a 13-year follow-up of Krakow adults, 
Jedrychowski and Krzyzanowski (1989) found 
that residence in higher sulfate areas better 
predicted FEV1 decrements among men than 
among women. Among women, SO2 and 
PM correlated with symptoms; the authors 
suggested that women’s greater average spent 
time near home produced better accuracy in 
exposure assessment.

Gender and sex differences in respiratory 
health effects among children. Disentangling 
gender and sex effects in air pollution–health 
associations among children may be more 
complicated, because lung function growth 
rates (critical periods for pollution effects) 
differ by sex (Berhane et al. 2000). Most air 
pollution epidemiology studies among chil-
dren examine chronic exposures, although 
outcomes considered vary widely, including 
lung function growth, wheeze, asthma onset 
and exacerbation, and symptoms.

Studies reporting stronger effects among 
girls. Using baseline cross-sectional results 
from the Southern California Children’s 
Health Study (CHS) of children in grades 4, 7, 
and 10 in 12 communities, Peters et al. (1999) 
reported that air pollutants (PM10, PM2.5, 
acid vapor, NO2, O3) were more strongly 
inversely associated with lung function among 
girls than among boys. The authors suggested 
gender differences in time outdoors and play 
activities, and sex differences in growth rates, 

Table 2. continued
Study Population Exposure metric(s) Outcome(s) of interest Risk among males Risk among females
Studies reporting null or mixed modification
Emenius et al. 2003 540 Stockholm children 

(0–2 years of age)
Indoor and outdoor 

residential NO2

OR for recurrent 
wheeze (high vs. low 
quartile)

OR (outdoor NO2) = 1.60 (0.78–3.26)a 
OR (indoor NO2) = 1.51 (0.81–2.82)

NR; effects did not differ by sex

Gauderman et al. 
2004

1,759 children in 12 
Southern California 
communities

Lifetime community annual 
average NO2, PM2.5, EC 
(most vs. least polluted)

Growth in FVC 
FEV1 
MMEF

β (NO2) = –95.0 (–189.4 to –0.6)a 
β (NO2) = –101.4 (–164.5 to –38.4) 
β (NO2) = –211.0 (–377.6 to –44.4)

NR; effects did not differ by sex

Lin et al. 2005 6,782 Toronto, Canada 
children, 0–14 years of age

6.5 µg/m3 increase in 
6-day PM10–2.5 exposure 

Hospitalizations for 
respiratory infections

β = 1.15% ( 1.02–1.30) β = 1.18% (1.01–1.36)

Liu et al. 2009 182 asthmatic children 
9–14 years of age in 
Windsor, Ontario, Canada

IQR change in same-day, 
lagged SO2, NO2, O3, 
PM2.5

Percent change in 
FEF25–75

β (same-day NO2 ) = –2.4 (–4.3 to –0.4) 
β (same-day PM2.5) = 1.9 (–3.5 to –0.3)

NR; effects did not differ by sex

Roemer et al. 1999 1,621 children in 14 
European centers, 
1993–1994

24-hr measures of PM10, 
BS, SO2, NO2 

Change in evening PEF 
per 100 µg/m3

β (lag 0 SO2) = 1.9 L/min (p < 0.05) 
β (lag 0 BS) = 0.7 L/min (p < 0.10) 
β (lag 2 PM2.5) = –0.5 L/min (NS)

β (lag 0 SO2) = 1.4 (NS) 
β (lag 0 BS) = 0.2 (NS) 
β (lag 2 PM2.5) = 1.2 (p < 0.05)

Schwartz 1989 4,300 youths (6–24 years 
of age), NHANES II, 
1976–1980

Annual average SO2, 
NO2, TSP, O3 at 
monitors

Change in FVC 
FEV1 
PEF

β (NO2) = –2.94 (p = 0.0004) 
β (NO2) = –3.09 (p = 0.0003) 
β (NO2) = –3.23 (p = 0.0019) 

NR; effects did not differ by sex

Smith et al. 2000 44 asthmatic children 
(< 14 years of age) 

Daily personal NO2 
exposure

Chest tightness OR = 1.29 (1.16, 1.43) NR; effects did not differ by sex

Zhao et al. 2008 1,993 pupils (11–15 years of 
age) in urban China

School indoor and 
outdoor SO2, NO2, O3

Asthma, wheeze OR (wheeze, indoor SO2) =  
1.18 (1.03–1.35)a

OR (wheeze, indoor CH2O) =  
1.24 (1.03–1.48)

NR; effects did not differ by sex

Abbreviations: abs, absorbance; BS, black smoke; CH2O, formaldehyde; EC, elemental carbon; IQR, interquartile range; MMEF, median mid-expiratory flow; NR, not reported; NS, not 
significant; OR, odds ratio; PEFR, peak expiratory flow rate; RR, relative risk; TRS, total reduced sulfur. Key results demonstrate observed effect modification, and are not exhaustive of 
results reported for each study. Values in parentheses are 95% confidence interval, unless otherwise indicated.
aEffects did not differ by sex, and therefore are reported here in only one column.
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hormonal factors, and respiratory mechanisms. 
Using longitudinal CHS analyses, Gauderman 
et al. (2004) found deficits in FEV1 growth 
from 10 to 18 years of age associated with 
community NO2, PM2.5, and acid vapor not 
significantly differing by sex. McConnell et al. 
(2002) reported higher asthma risk with out-
door sports participation in higher O3 areas in 
the CHS cohort, especially among girls, and 
suggested that higher ventilation during play 
may increase exposures. 

In a U.S. study, Neas et  al. (1991) 
reported stronger associations between home 
indoor NO2 and respiratory symptoms among 
girls than among boys 7–11 years of age. The 
authors cited reports of stronger effects among 
girls, including a British study linking gas 
stove use to symptoms among girls (Melia 
et al. 1977), a paper reporting FEV75 (75th 
percentile) decrements of 1.1% among girls 
9–13 years of age but slight increases among 
boys (Hasselblad et al. 1981), and a British 
study linking kitchen NO2 and gas stoves to 
greater reductions in PEF and forced expira-
tory flow between 25th and 75th percentile 
(FEF25–75) among girls (Florey et al. 1979).

Among Dutch children 7–12 years of age, 
Brunekreef et al. (1997) found that truck traf-
fic and black smoke at schools were associated 
with lung function reductions only among 
girls, and van Vliet et al. (1997) found that 
residential distance from freeway, truck traf-
fic density, and school black smoke measures 
better predicted chronic respiratory symptoms 
among girls than among boys, after account-
ing for SES and home exposures. In both 
studies, the authors contrast their results with 
evidence of stronger passive smoke effects 
among boys. However, these studies examine 
in utero exposures and noninhalation path-
ways (Cuijpers et al. 1995; Cunningham et al. 
1994), and suggest that, because boys exhibit 
more symptoms overall, air pollution effects 
may be obscured by other respiratory “noise” 
(Pershagen et al. 1995).

Among 673 adults and 106 children in 
Haarlem, the Netherlands, Oosterlee et al. 
(1996) reported significant associations between 
living along busy (vs. quiet) streets and asthma 
or dyspnea only among girls. They suggested 
that boys’ higher total respiratory symptoms 
may mask pollution effects, and considered 
gendered factors (e.g., passive smoking, activity 
patterns, coexposures) in their analysis.

In Oslo, Norway, Oftedal et al. (2008) 
found that lifetime residential NO2, PM10, 
and PM2.5 among 9- and 10-year-old chil-
dren was associated with lower PEF, more 
strongly among girls, only slightly attenuated 
by SES adjustment. The authors suggested 
biological explanations (e.g., girls experi-
ence growth spurts earlier, captured within 
this follow-up, or hormonal status may alter 
girls’ responses) and suggested unmeasured 

SES-related confounders (e.g., gendered sports 
participation).

In a case–control study in Stockholm, 
Pershagen et al. (1995) reported significant 
associations between outdoor home NO2 and 
gas stove use on wheezing bronchitis only 
among girls, despite boys’ higher wheezing 
prevalence. Outdoor NO2, gas stove use, and 
smoking conferred multiplicative risks in 
girls but not in boys, after SES adjustment. 
The authors reported consistency with prior 
studies, indicated that results were unlikely 
due to selection bias or misclassification, 
and acknowledged a need for activity data to 
explore gender differences.

Rosenlund et  al. (2009) found asso-
ciations between chronic residential NO2 
exposure and lung function to be stronger 
among Roman girls than boys 9–14 years of 
age; mean FEV1 and FEF25–75 decrements 
were approximately four times greater in 
girls than boys, corroborating other studies 
(Cesaroni et al. 2008; Kulkarni et al. 2006; 
Li et al. 2003; Neas et al. 1991; Nordling 
et al. 2008; Oftedal et al. 2008; Pershagen 
et al. 1995). The authors indicated complexi-
ties in comparing childhood cohorts differing 
by age, pubertal status, pollution mixtures, 
study designs, and susceptibilities and noted 
that the consistency of results across Europe 
reporting stronger air pollution effects among 
girls, meriting further investigation.

Studies reporting stronger effects among 
boys. In the Traffic-Related Air Pollution on 
Childhood Asthma (TRAPCA) study, Gehring 
et al. (2002) reported stronger associations 
between residential PM2.5 and symptoms 
(e.g., cough without infection, cough at night) 
among boys than among girls 0–2 years of age. 
The authors suggested that differences in total 
symptoms, masking pollution effects, were 
important or that, given sex differences in lung 
development, infant girls have larger airways 
relative to body size and lesser airway resistance.

In a prospective cohort study of annual 
mean total suspended particle (TSP) and SO2 
exposures among preadolescent children in 
Krakow, Poland, Jedrychowski et al. (1999) 
reported stronger associations with FVC 
and FEV1 among boys than among girls. 
The authors noted sex-differing lung growth 
rates, producing different critical periods for 
pollution effects.

Studies reporting null or mixed effect 
modification. In a 3-year prospective study 
of children in Mexico City, Mexico, Rojas-
Martinez et  al. (2007) associated elevated 
PM10, NO2, and O3 with reduced lung func-
tion among boys and girls. Interquartile range 
increases in NO2 predicted FEV1 declines in 
girls, whereas increases in PM10 predicted FEV1 
declines among boys. Elevated O3 predicted 
FEV1 decreases three times larger among girls 
than among boys, unexplained by SES. The 

authors compared these findings with CHS 
results on sex-differing lung function growth 
and suggested higher O3 exposures among 
children spending time outdoors (Gauderman 
et al. 2000; McConnell et al. 2002).

In Toronto (Ontario, Canada), respiratory 
hospitalizations were significantly associated 
with PM2.5–10 among boys and girls, with PM10 
among boys, and with NO2 among girls (Lin 
et al. 2005). The authors proposed sex-linked 
explanations: Boys have smaller airways relative 
to lung volume and differ in smooth muscle, 
vascular function, and hormonal status.

Discussion
Among adults, evidence of effect modification 
by sex remains uncertain; studies of older adults 
and those using residential exposure estimates 
suggest stronger effects among women. The 
range of plausible explanations is very broad, 
including sex-linked biological factors related 
to lung volume, deposition, reactivity, and hor-
monal influences on chemical transport and 
systemic regulation. Gendered explanations 
include confounding or modification by smok-
ing behaviors, job-related chemical exposures, 
differential accuracy in residence-based expo-
sure assignment, exposures to indoor allergens 
and cleaning agents, and differing exposure 
and response to psychosocial stressors. Refined 
distinction between sex and gender may eluci-
date these associations.

Studies of younger children suggest stron-
ger associations among boys; older childhood 
cohorts suggest the opposite. Age-related 
trends may be linked to sex-differing lung 
function growth rates (Gold et al. 1994) and 
differences in airway function at birth, which 
suggest lower respiratory volumes and greater 
airway resistance among boys (Stocks et al. 
1997). At older ages, gendered activities may 
also shape pollution response.

Gender, sex, and multiple exposures. 
Environmental exposures are complex. Traffic-
related air pollution includes gaseous species 
and PM from combustion, tire and brake wear, 
resuspended roadway dusts, and salts (Schauer 
et al. 2006). Pollution exposures occur in mul-
tiplicity, and polluted neighborhoods often 
also suffer poverty, crime, and lower access 
to health-related resources (Morello-Frosch 
and Shenassa 2006). In workplaces, chemical 
exposures co-vary with heat, noise, and strain, 
acting recursively and synergistically on work-
ers’ health (MacDonald et al. 2001). Gender 
analysis fits into environmental health under 
this multiple exposures framework. There is 
growing interest in pollution effect modifi-
cation by SES (Jerrett et al. 2004; O’Neill 
et al. 2003) and chronic stress (Chen et al. 
2008; Clougherty et al. 2006, 2007; Morello-
Frosch and Shenassa 2006). Likewise, SES is 
a complex mix of social and physical stressors 
accumulating over the life course (Romieu 
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et al. 2005), shaping health and susceptibility. 
Behavioral and physiologic responses to SES 
and stressors may vary by gender (Seeman et al. 
2002); women, on average, may respond more 
strongly to interpersonal stressors (Davis et al. 
1999) and experience different physiologic 
sequelae (Hermes et al. 2006; Iwasaki-Sekino 
et al. 2009; Seeman et al. 1995). Women’s 
behavioral responses may emphasize social 
support, caregiving, and child tending (Taylor 
et al. 2000), whereas better known “fight-
or-flight” responses emphasize sympathetic–
adrenal–medullary enervation and activities 
linked to traditionally male roles (Powell and 
Matthews 2002; Taylor et al. 2000). Stress 
may be a gendered factor (i.e., exposures dif-
fer by gender) and a sex-differing factor as 
well, if physiologic responses to stress differ 
(e.g., sex-differing epinephrine responses). If 
stress modifies pollution response, then under-
standing gendered stress responses is likely 
important for accurately characterizing gen-
dered pollution responses.

Research from social geography may help 
to better elucidate gendered spatial and behav-
ioral exposure patterns. Gendered use of space 
and exposure patterns in urban communities 
is evident in the example of fear of violence. 
One large U.S. survey reported that 26% of 
women “never” leave home after dark (vs. 
9% of men), 51% “always” bring friends for 
protection (vs. 4% of men), and 71% con-
sider safety when parking (vs. 33% of men) 
(Gordon and Riger 1991). Strong gender dif-
ferences in perceived safety shape activity and 
exercise patterns; parents’ greater restriction 
of girls’ geographic range in U.S. cities shapes 
exposure paradigms, exercise, experience, 
and developmental opportunity (Katz 1993). 
Better understanding the gendered environ-
ment can improve exposure assessment, bet-
ter isolate biological responses, and provide a 
model for examining other social effect modi-
fiers (Clougherty and Kubzansky 2009).

Analytic approaches for disentangling 
effects of gender and sex. Because gender and 
sex are tightly intertwined, their effects can 
be difficult to distinguish in epidemiologic 
data. “Gender” and “sex” have commonly 
been conflated in epidemiologic research 
(Krieger 2003). Most important, careful use 
of language distinguishing these constructs 
will enable researchers to better describe and 
understand sources of difference in exposure–
health relationships. Methodology for gen-
der analysis is an evolving field, although the 
methods described here may help to disen-
tangle some effects of sex and gender and may 
merit further exploration in environmental 
epidemiology.

Reporting sex-stratified results is more 
informative than is adjustment for sex 
(Arbuckle 2006) and can identify associations 
differing broadly between males and females. 

However, sex stratification often confounds 
tightly correlated gender and sex effects, 
obscuring true sources of difference. Preferably, 
researchers may stratify data separately by mul-
tiple sex- and gender-associated factors (e.g., 
body size, working outside the home, time 
spent on household tasks) to elucidate sources 
of difference. Most epidemiologic data sets are 
not adequately powered to perform multiple 
stratifications simultaneously, so these mul-
tiple stratifications usually need be performed 
separately. Stratification variables should reflect 
time–activity patterns or meaningful biologi-
cal factors, rather than stereotypical attributes, 
to identify true factors relevant to the cohort 
under study.

Population-specific exposure modeling 
may improve culturally and behaviorally spe-
cific exposure assessment, clarifying gendered 
exposure differences. Residential exposure met-
rics may be more accurate for women, who 
spend more time near home on average, espe-
cially when caring for children or other family 
members (Gilliand et al. 2005; Kingsley 2003; 
Maziak et al. 2005; Payne-Sturges et al. 2004). 
Residential activities may require microen-
vironmental exposure assessment (LaRosa 
et al. 2002), because gendered activities (e.g., 
cooking, cleaning, lawn care) produce differ-
ent exposure patterns. Exposure measurement 
may benefit from gendered exposure measure-
ment, comparison of gendered activities across 
communities (Berhane et al. 2004), or foci on 
temporal exposure characteristics (e.g., diurnal 
trends in residential exposures and activities, 
critical life-course periods related to hormonal 
composition or roles) (Gilliand et al. 2005). 
Assignment of gendered exposures broadly to 
sex-stratified groups, however, should be gen-
erally avoided, because this practice obscures 
sources of variability between men and women, 
further confounding sex effects in subsequent 
epidemiologic analyses.

Temporally refined exposure assessment 
may elucidate gendered activity distribu-
tions. Recent approaches include probabilistic 
modeling of personal exposures (Zidek et al. 
2005). Techniques from the social sciences 
may be useful; the experience sampling 
method (Csikszentmihalyi and Larson 1987) 
uses cell phones or pagers to prompt individ-
uals throughout the day to record their loca-
tion, activities, and well-being. The technique 
improves upon diary entries, which suffer 
recall bias, and allows more detail in activity 
reports (e.g., cleaning activity with duration 
and product name) with contemporaneous 
physiological or psychological conditions that 
may modify effects. Aggregated, the data pro-
vide population-specific activity distributions 
and capture mean daily activity and exposure 
differences between men and women.

Physiologically based pharmacokinetic 
(PBPK) modeling may help to distinguish sex 

differences in dermal absorption, body size, 
and toxicity (Arbuckle 2006; Meibohm et al. 
2002) from gendered exposures. PBPK mod-
els may facilitate analysis of biological pro-
cesses across multiple life stages (e.g., infancy, 
childhood, puberty, adulthood) and, among 
women, by reproductive cycle and hormonal 
status (e.g., menarche, pregnancy, lactation, 
menopause). Better understanding of sex and 
life-stage aspects of bodily chemical transport 
may help to elucidate differences in effective 
dose or chemical interactions in the body.

Propensity analysis incorporates predictive 
modeling for both exposures and responses, 
enabling researchers to predict subjects’ 
propensity (likelihood) of exposure, given 
preexposure characteristics and population 
exposure distributions. Researchers can then 
examine health responses among individuals 
with comparable exposure likelihoods, using 
propensity matching or propensity strati-
fication (Kurth et al. 2006). For example, 
sex-stratified propensity models can estimate 
effects of education, work history, SES, fam-
ily structure, and home demands on exposure 
assignment (e.g., job, neighborhood of resi-
dence) for men and women. Then researchers 
can better observe health responses by sex, 
reasonably isolating effects of mean biological 
differences from those of gendered exposure 
assignment. One recent occupational study 
examined blue-collar status and hypertension 
among employees of a large U.S. manufac-
turing company (Clougherty et al. 2009). 
Family structure influenced exposure (job) 
assignment for men and women; single moth-
ers were more likely to be blue-collar workers 
than were other women. Men with partners 
and children were more likely to be white-col-
lar workers than were other men. Blue-collar 
status increased risks solely among women 
predicted to be blue collar, suggesting interac-
tion effects between SES (which predicted job 
assignment) and on-the-job exposures.

Finally, researchers have proposed variants 
of multilevel modeling (Phillips 2005) to dis-
aggregate variability between and within the 
sexes. Researchers may differentiate sex-linked 
biological effects (e.g., target organs, hormonal 
composition), which can differ substantially 
between men and women, from gendered 
exposures, which generally display more vari-
ability among men and women. The technique 
may be applicable, however, only to illnesses 
directly involving biological parameters (e.g., 
sex organs, hormonal composition) which dif-
fer strongly by sex. A different method for 
employing multilevel modeling stems from the 
societal-level construction of gender, whereas 
sex is an individual-level biological construct. 
Examining men’s and women’s exposure 
and disease patterns across and within soci-
eties that vary in measures of gender equity 
(e.g., income disparities, female education, 
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reproductive rights) may offer important clues 
toward understanding root causes of exposure 
and susceptibility differences (Phillips 2008).

Conclusions
Studies suggest that health responses to air 
pollution may differ between women and men 
and between girls and boys. It remains unclear, 
however, whether observed modification is a 
result of sex-linked biological differences (e.g., 
hormonal complement, body size) or gender 
differences in activity patterns, coexposures, or 
exposure measurement accuracy. Most modifi-
cation likely consists of some combination of 
these two factors (exposure patterns and bio-
logical response); disentangling these effects is 
challenging yet necessary toward fully under-
standing the relevant pathways for differential 
air pollution effects on health.

Because gender varies by state and society, 
designing effective localized health interven-
tions requires clarity about these distinct 
sources of difference (gender and sex), with an 
aim of improving population health. Careful 
consideration of gender and sex effects and 
exploration of nascent methods for quanti-
tative gender analysis may help to elucidate 
sources of difference. More broadly, exploring 
the role for gender analysis in environmen-
tal epidemiology may provide a model for 
exploring other social factors that can shape 
population responses to air pollution.
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